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ABSTRACT

A method for selecting targeted observation locations is demonstrated. This method is based

on optimal estimation (Kalman filter) theory; it determines the observation location which will

maximize the expected improvement, which can be measured in terms of the expected reduction

in analysis or forecast variance. This technique requires an accurate model for background error

statistics that will vary both in space and in time. Here, these covariances are generated using an

ensemble Kalman filter techniques.

The technique is demonstrated using a quasigeostrophic channel model under perfect-model as-

sumptions. The algorithm is applied here to find the supplemental rawinsonde site to add to a

regular network of rawinsondes that will reduce analysis errors the most. The observation net-

work is configured in this experiment so there is a void in the western third of the domain. En-

sembles from three data assimilation schemes are tested as input to the target selection proce-

dure, two variants of the standard ensemble Kalman filter and a third perturbed observation (3D-

Var) ensemble. The technique is shown to find large differences in the expected variance reduc-

tion depending on the observation location, the flow of the day, and the ensemble used in the

targeting algorithm. The two variants of the ensemble Kalman filter defined consistently simi-

lar targets to each other, and assimilation of the targeted observation typically reduced analysis

errors significantly. The perturbed observation ensemble picked very different observation loca-

tions and the analyses were the analyses improved as much.

The amount of improvement from assimilating a supplemental targeted observation instead of a

fixed observation in the middle of the void depended on whether the observation was assimilated

intermittently or during every analysis cycle. For intermittent assimilation, the targeted obser-

vation provided a dramatic improvement relative to the supplemental fixed observation. When

continuously assimilated, the improvement was smaller.
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For the intermittent assimilation of a targeted observation, targeting based on the maximum spread

in background forecasts in the ensemble Kalman filter provided similar target locations and sim-

ilar analysis improvements to those generated with the full algorithm. The continuous assimila-

tion of targets based on the spread algorithm was no better than when observations from a fixed

target in the middle of the void were assimilated.
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1. INTRODUCTION

It has long been recognized that the quality of a numerical weather forecast is related to the

quality of its initial condition (the “analysis”). If the analysis has large errors, or if it has mod-

erate errors in regions where forecast errors grow quickly, then the resulting numerical forecast

may be poor.

Let us assume that in addition to a routine network of observations, additional observations

could be collected sporadically for a moderate cost. These observations, which might come from

dropsondes, pilotless drones, or driftsondes, would be taken at a location(s) chosen to maximize

the expected improvement in some aspect of the ensuing analysis or the subsequent forecasts.

This general problem is known as targeting, or adaptive observations (Emanuel et al. 1995,

Snyder 1996, Lorenz and Emanuel 1998).

Most existing methods for targeted observations are at least in part heuristic, as their devel-

opment has been driven by practial opportunities in field experiments such as FASTEX (Sny-

der 1996, Joly et al. 1997, Emanuel and Langland 1998), NORPEX (Langland et al. 1999a) and

the Winter Storms Reconaissance Program (Szunyogh et al. 2000). These methods include the

singular vector technique (Palmer et al. 1998, Buizza and Montani 1999, Bergot et al. 1999,

Gelaro et al. 1999, 2000, Bergot 2001); a quasi-linear inverse approach (Pu et al. 1997, 1998,

Pu and Kalnay 1999); gradient and sensitivity approaches (Bergot et al. 1999, Langland et al.

1999b, Baker and Daley 2000), ensemble spread techniques (Lorenz and Emanuel 1998, Morss

1998, Morss et al. 2001), the ensemble transform technique (Bishop and Toth 1999, Szunyogh

et al. 1999), and the ensemble transform Kalman filter (Bishop et al. 2001, Majumdar et al. 2001).

In this paper we step back to consider the targeting problem on a somewhat more theoretical

level. Choosing observation locations requires that we predict the influence of a given observa-

tion on the uncertainty of the analysis or the subsequent forecast. That influence is determined

not only by the form and accuracy of the observation and how errors will grow during the subse-

quent forecast (if we are interested in forecasts), but also by the prior or background uncertainty

given all other available information, such as other observations and previous forecasts. Berliner
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et al. (1999) provide the analytical tools for understanding how analysis and forecast uncertainty

are related to observation and background uncertainty. Their framework, which is reviewed in

section 2, is an application of ideas of statistical design and estimation theory to targeted obser-

vations (see their Section 2, Appendix A, and Cohn 1997). The choices of observation locations

derived through this framework are optimal in the case that the required probability distributions

are normal and forecast-error evolution is linear. This framework differs from many of the ex-

isting approaches that do not consider the effects of background uncertainty, such as the singu-

lar vector technique or sensitivity techniques (as implemented in practice, though not in princi-

ple; see Ehrendorfer and Tribbia 1997, Barkmeijer et al. 1998, Palmer et al. 1998). As a conse-

quence, when using these schemes, the same target location is selected regardless of how large

or small the background error is in a given location, and regardless of how accurate or inaccu-

rate the observation (Baker and Daley 1999).

The data assimilation scheme is an additional factor that determines the influence of an ob-

servation on the background uncertainty. Results from field experiments show that adding obser-

vations to operational analysis/forecast systems can degrade subseqent forecasts, and this has of-

ten been blamed on inadequacies of the operational assimilation schemes. (Bergot 2001) found

that supplemental observations provided a more consistently positive impact when they were as-

similated with a 4-dimensional variational analysis (4D-Var; Le Dimet and Talagrand 1986, Ra-

bier et al 1998) rather than a 3-dimensional variational analysis (3D-Var; Lorenc 1986, Parrish

and Derber 1992). Note, however, that such degradations are inherent in statistical assimilation

schemes; see Morss and Emanuel (2001). We show here in section 2 that, given a good estimate

of the background uncertainty, the effects of sub-optimal assimilation schemes can be incorpo-

rated when predicting the influence of an observation.

Our primary intent in this paper is to demonstrate a relatively simple, objective, and com-

putationally efficient algorithm for target selection based on and consistent with Berliner et al.

(1999). To wit, we shall use an ensemble of forecasts coupled to three different data assimila-

tion schemes, including two variants of the ensemble Kalman filter (“EnKF;” Evensen 1994;
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Evensen and van Leeuwen 1996; Houtekamer and Mitchell 1998, 2001; van Leeuwen 1999,

Keppenne 2000; Mitchell and Houtekamer 2000; Hamill and Snyder 2000, Hamill et al. 2001,

Anderson 2001, Whitaker and Hamill 2001). Under the assumptions of a perfect model, an in-

finite ensemble, normality of observation and background errors, and linearity of error growth,

the ensemble Kalman filter provides the minimum variance estimate of an updated analysis state

and a correct model of the analysis covariances given all prior and currently available observa-

tions (Burgers et al. 1998). We demonstrate that a target selection algorithm with an approx-

imate model of background error covariances provided by a large ensemble is able to identify

target locations where analysis improvement is likely to be the largest. Its straightforward and

computationally efficient design permits it to estimate the magnitude of the variance reduction at

each of a multitude of possible target locations; the targeting algorithm then selects the location

where this variance is reduced by a maximum expected amount. We will also develop but not

test a targeting algorithm that can find the observation locations which maximize the expected

reduction in forecast error.

Others investigations of targeting have used ensemble techniques to estimate background

uncertainty (Lorenz and Emanuel 1998, Bishop and Toth 1999, Morss et al. 2000, Hansen and

Smith 2000). Only Bishop et al. (2001), however, have used that estimate to calculate explicity

the influence of an given observation. Our technique is mathematically equivalent to theirs (and

both are approximations to the results of Berliner et al. (1999)); we present here a computation-

ally more efficient approach to the calculations valid for simple observation types and demon-

strate that estimates of background uncertainty from the EnKF allow accurate predictions of the

influence of further observations.

In part to limit the scope of this paper, we focus on choosing additional observations to min-

imize expected analysis errors. The algorithm we develop, however, has a straightforward exten-

sion to the case of minimizing expected forecast errors, as described in section 3d. Minimizing

expected analysis errors is also of interest in its own right, as it is the natural approach if one

desires to optimize forecast quality simultaneously at multiple lead times or from multiple ini-
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tialization times (Berliner et al. 1999). Minimizing expected analysis errors also avoids poten-

tial complications arising from the nonlinearity of forecast dynamics, and the associated non-

Gaussianity of forecast errors (Hansen and Smith 2000); the algorithm we derive will be useful

only when forecast errors are not too far from Gaussian.

2. DESIGN OF THE EXPERIMENT

The rest of the paper will use a quasigeostrophic (QG) channel model as vehicle for test-

ing algorithms for targeting. The target selection scheme will be tested using ensembles coupled

with three different data assimilation schemes, two variants of an ensemble Kalman filter and a

“perturbed observation” (Houtekamer and Derome 1995, Hamill et al. 2000) 3D-Var scheme.

For these experiments we assume the forecast model is perfect. A long reference integration

of the QG model provides the true state; the assimilation and forecast experiments then use that

same model together with imperfect observations of the true state.

Errors will be measured in a total energy norm. Let f denote the Coriolis parameter (here,

10�4s�1); m is the dimension of the model state vector; N is the Brunt-Väisälä frequency (here,

1:13� 10�2s�1), and Φ0 is a geopotential perturbation. Then the energy norm is denoted as

k � kenergy = f�1m�1=2 �

(
mX
j=1

h�@Φ0

@x

�2

j
+
�@Φ0

@y

�2

j
+
f2

N2

�@Φ0

@z

�2

j

i)1=2

: (1)

a. Model and Observations

The QG model is documented in Snyder et al. (2001) and was used in Hamill and Snyder

(2000) and Hamill et al. (2000). It is a mid-latitude, beta-plane, grid-point channel model that is

periodic in x (east-west), has impermeable walls on the north-south boundaries, and rigid lids at

the top and bottom. There is no terrain, nor are there surface variations such as land and water.

Pseudo-potential vorticity (PV) is conserved except for Ekman pumping at the surface, r4 hor-

izontal diffusion, and forcing by relaxation to a zonal mean state. The domain is 16000 � 8000

� 9 km; there are 129 grid points east-west, 65 north-south, and 8 model forecast levels, with

additional staggered top and bottom levels at which potential temperature � is specified. Fore-

cast model parameters are set as in Hamill et al. (2000).
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A single fixed observational network is tested here (Fig. 1), with a data void in the western

third of the domain. All observations are presumed to be rawinsonde soundings, with u- and v-

wind components and � observed at each of the 8 model levels. Observation errors (Table 1) are

assumed to be normal and uncorrelated between vertical levels and uncorrelated in time. The

same observation error variances are used in the data assimilation and in the generation of syn-

thetic “control” observations. These observations and new analyses are generated every 12 h,

followed by a 12-h forecast with the QG model that produces the background state at the next

analysis time.

b. Data assimilation schemes.

The targeting algorithm to be described in the section 3 requires an ensemble whose sample

covariance matrix approximates that of the background errors (prior to the assimilation of the

additional observations). That ensemble will depend on the specific data assimilation scheme

used to assimilate previous observations.

We will use three assimilation schemes, a 3D-Var algorithm and two variants of the EnKF.

All are described in detail in the Appendix, and parameter settings in Table 2. The two versions

of the EnKF differ in the way that background error covariances are approximated given an en-

semble of background states. In the first, the deviation of each member from the ensemble mean

is “inflated” (that is, multiplied by a scalar constant greater than 1) before their use in the EnKF.

In the second, the assimilation is based on a “hybrid” covariance model in which the background

error covariance matrix is approximated as a weighted sum of the sample covariance from the

ensemble and a stationary covariance matrix (specifically, that used in the 3D-Var scheme). Both

versions of the EnKF use covariance localization as discussed in the Appendix.

The required ensemble is generated in the same manner for each of these assimilation schemes.

Suppose that we have an ensemble of prior forecasts. Then, given new observations, each mem-

ber of this ensemble is updated separately with those observations perturbed by an independent

realization from the observation-error distribution; this we term a “perturbed observation” scheme.

The resulting ensemble of analysis can then be used to produce an ensemble of short-range fore-
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casts valid at the next observation time. Previous work has shown that in a perfect-model con-

text, such ensembles have desirable sampling characteristics for when used either with a 3D-Var

assimilation (Hamill et al. 2000) or in the context of the EnKF (Houtekamer and Mitchell 1998,

2001; Hamill and Snyder 2000). Again, further details of the implementation appear in the Ap-

pendix. For ensemble data assimilation schemes that do not involve perturbing the observations,

see Lermusiaux and Robinson (1999), Anderson (2001), and Whitaker and Hamill (2001).

3. METHODOLOGY FOR CHOOSING TARGET LOCATIONS

The methodology we implement for the selection of a target location follows closely from

the theory of Berliner et al. (1999). Although more efficient computationally, this methodology

is mathematically identical to that of Bishop et al. (2001) in its use of an ensemble to estimate

the required background error covariance matrix. Our emphasis here is to demonstrate that this

rigorous approach to adaptive observations is feasible and effective, in that it can accurately pre-

dict the effect of observations on analysis uncertainty using a relatively small ensemble. In ad-

dition, this methodology is able to predict the impact of additional observations even when those

observations are assimilated with a sub-optimal assimilation scheme. Notation generally follows

the suggestions of Ide et al. (1997).

a. Equations to predict analysis-error variance

First, consider the analysis calculation, written in the general form

xa = xb + K̂
�
yo �Hxb

�
=
�
I� K̂H

�
xb + K̂yo (2)

where xa is the m-dimensional analyzed state vector yo is a p-dimensional vector of observa-

tions, K̂ is an approximate gain matrix defined below, and xb is the background state, which

is typically a forecast from the previous analysis but more generally is our best estimate of the

state prior to assimilating the observations yo. The linear operator H relates the true state xt to

the observations through

yo = Hxt + �; � � N (0;R); (3)
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In reality, the relation between the model state and the observations is often nonlinear, and most

existing assimilation schemes satisfy (2) and (3) only approximately.

The gain matrix K̂ is specific to the assimilation scheme. In all the schemes considered

here, K̂ has the form

K̂ = P̂bHT
�
HP̂bHT + R

��1
; (4)

where P̂b is a model or approximation of the actual backround error covariance matrix,

Pb =
D

(xt � xb)(xt � xb)T
E
; (5)

where h�i denotes the expected value. For example, many 3D-Var systems use P̂b = B, where B

is a stationary, isotropic covariance matrix, while the EnKF bases P̂b on the sample covariance

of an ensemble of background states.

Next, we derive a general expression for the analysis error covariance,

Pa =
D

(xt � xa)(xt � xa)T
E
: (6)

Subtracting both sides of (2) from xt gives

xt � xa =
�
I� K̂H

�
(xt � xb) + K̂�: (7)

Substituting this result into (6) and assuming that the observation and background errors are un-

correlated, i.e.,
D
�
�
xt � xb

�TE
= 0, we obtain

Pa =
�
I� K̂H

�
Pb
�
I� K̂H

�T
+ K̂RK̂T

= Pb � K̂HPb �
�
K̂HPb

�T
+ K̂

�
HPbHT + R

�
K̂T (8)

If the assimilation scheme uses the correct background error covariance matrix (P̂b = Pb), then

K̂ becomes the Kalman gain matrix, K = PbHT(HPbHT + R)�1, and

Pa =
�
I�KH

�
Pb = Pb � PbHT

�
HPbHT + R

��1
HPb; (9)

which is the familiar updating of covariances in the Kalman filter.
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Equations (8) and (9) thus provide us with a framework for estimating analysis error covari-

ances for a given H in the case of imperfect and perfect background error statistics, respectively.

These equations express how assimilation of new observations changes the uncertainty of the

analysis relative to that of the background. This change depends on the form and location of

the observations through H, the data assimilation scheme through K̂, and the background un-

certainty through Pb. Conversely, given H, K̂, and Pb (or at least a good estimate of the latter),

the change in the analysis uncertainty is determined. In particular, that change does not depend

on the actual observations yo and one can predict the effects of additional observations prior to

the measurements themselves (Berliner et al. 1999).

We emphasize that (8) accounts naturally for the assimilation scheme and, moreover, that

the influence of the assimilation scheme on the analysis uncertainty can not be fully quantified

without knowledge of the true Pb. In addition, note that while the derivation of (8) and (9) does

not make assumptions about the form of the underlying probability distributions for the fore-

cast and analysis, those equations will be useful only when the covariance matrices Pa and Pb

are useful summaries of uncertainty, that is, when those distributions are not too far from Gaus-

sian. The usefulness of (8) is also limited to those assimilation schemes in which the update is

approximately linear as assumed in (2).

b. Targeting to reduce analysis error variance

Now suppose we want to choose the location of a single observation to minimize the ex-

pected analysis error variance.1 Formally, this amounts to maximizing tr(Pb � Pa) over a set of

observation operators H consisting of all possible locations for the observation. Assuming here-

after that an ensemble is available that provides a reasonable and computationally tractable esti-

mate of Pb, then (8) or (9) allow us to determine the best H by evaluating tr(Pb � Pa) for each

H. Typically, this additional observation will supplement an existing network of routine observa-

1 This minimization can be carried out for measures of uncertainty other than total variance. A

variety of choices are discussed in Berliner et al. (1999).
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tions. The background or prior estimate to which Pb pertains is then the analysis with all routine

observations.

For each potential observation location, there is an associated H; however, it may be eco-

nomically feasible to target more than one location at a time. With two target locations, one

would potentially have to evaluate all the combinations of locations to find the two that would

reduce variance the most. Instead, we will make the simplifying assumption that the correct

combination of target locations can be determined with a serial, or “greedy” algorithm (Lu et al.

2000, Bishop et al. 2001). This serial approach is applicable when successive observations have

independent errors.

Specifically, to determine a sequence of multiple target locations, the following steps are re-

peated: first, tr(Pb � Pa) is computed for each candidate observation location (each H). The

location with the maximum trace is then selected, and an updated ensemble is generated whose

sample covariance approximates Pa implied by assimilating an observation at that location (note

that real observations need not be assimilated at this point; the important detail is that the en-

semble can be updated with some synthetic set of observations, since (8) and (9) depend only on

the observation error covariance R and not on the actual observations.) The targeting algorithm

is then applied again using the updated ensemble of analyses as background forecasts to select

the next target location.

If the observations will be assimilated using a relatively simple model of background er-

ror covariances, perhaps as are used in 3D-Var, then (8) should be used instead of (9) and pre-

diction of the variance reduction in (8) requires an ensemble (such as the perturbed-observation

ensemble discussed in the Appendix) that reflects uncertainty in the background using a given

assimilation scheme. Of course, if the ensemble estimate of Pb is good enough for this purpose,

it would also be natural to include it in the assimilation scheme and (8) would not be required.

b. Making the targeting algorithm computationally efficient

The algorithm just outlined involves evaluating the influence of an observation on the anal-

ysis error over many different observation locations. In this section, we outline a relatively inex-
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pensive technique for computing the expected reduction in analysis variance for a given observa-

tion.

The technique begins from an ensemble of background states, written as fxb
i ; i = 1; : : : ; ng

where subscripts denote ensemble members. The ensembles considered here all approximate

random samples from the the conditional distribution of xt given other information. The back-

ground state xb is thus replaced by the ensemble mean, x̄b = (1=n)
PN

i=1 xb
i ; and Pb is estimated

in (8) and (9) by

P̂b =
1

n� 1

nX
i=1

(xb
i � x̄b)(xb

i � x̄b)T = XbXbT; (10)

where Xb is the matrix whose ith column is (n � 1)�1=2(xb
i � x̄b). For the remainder of this

section, we will simply replace Pb by P̂b in (9), with the assumption that P̂b approximates Pb

with sufficient accuracy. Our subsequent results will demonstrate that this is so in a moderately

complex, quasigeostrophic model.

If we are evaluating the reduction from assimilating a single radiosounding, the matrix
�
HPbHT+

R
�

is of full rank, relatively low order, symmetric, and positive definite. Hence it can be decom-

posed as QΛoQT, where Q is an orthogonal matrix whose columns are the normalized eigenvec-

tors and and Λo a diagonal matrix of associated eigenvalues. Since Q�1 = QT,

�
HPbHT + R

��1
= QΛ�1

o Q
T

=
�
QΛo

�1=2
��

QΛo
�1=2

�T
; (11)

and hence, from (9),

Pb � Pa =
�

PbHTQΛ�1=2
o

��
PbHTQΛ�1=2

o

�T
(12)

However, in computing the term in parentheses on the right-hand side of (12), a matrix multipli-

cation by Pb is still necessary, and if H is sparse, this typically will be the most computationally

intensive step.

In calculating the trace of (12), the product PbHT is evaluated as Xb(HXb)T as in (A2) from

Appendix 1. To render this more computationally efficient, we perform a singular-value decom-

position on Xb, so that

Xb = UΣVT; (13)
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where U is an m� (n� 1) matrix with orthonormal columns, Σ is an (n� 1)� (n� 1) diagonal

matrix of non-zero singular values, and V is an (n � 1) � (n � 1) orthogonal matrix. Similarly,

HXb = HUΣVT so (HXb)T = VTΣT(HU)T = VTΣ(HU)T since ΣT = Σ. Using this and VTV = I,

(12) can be rewritten as

Pb � Pa =
�
UΣV(HXb)TQΛo

�1=2
��

UΣV(HXb)TQΛo
�1=2

�T

=
�
UΣ2(HU)TQΛo

�1=2
��

UΣ2(HU)TQΛo
�1=2

�T
(14)

Computing the trace of (14) can be further simplified. Since the columns of L are orthonormal,

the leading multiplication by L in each of the factors on the r.h.s. can be omitted without chang-

ing the trace of the product, and

tr(Pb � Pa) = tr

"�
Σ2(HU)TQΛo

�1=2
��

Σ2(HU)TQΛo
�1=2

�T
#

(15)

This equation is relatively inexpensive to compute. There is an up-front cost of performing

an singular value decomposition of Pb, but this need be done only once, and after this decom-

position is performed, then the evaluation of (15) at any particular observation location can be

performed quickly. The operation (HU)T is (for this model) simply an extraction of forecast val-

ues at observation locations from the ensemble of eigenvectors, and the multiplication by Λp is

inexpensive since Λp is diagonal. An eigenvalue decomposition of HPbHT must be performed

for each potential observation location, but the rank of this matrix is relatively small, and so its

decomposition is inexpensive.

Note that for computational reasons, we have made one simplification that may reduce the

accuracy of this targeting scheme. Background error covariances in the targeting algorithm are

assumed to be a direct outer product of ensemble member forecasts’ deviation from their mean,

as in (12); that is, Pb is modeled strictly in a reduced, n-dimensional subspace to make the com-

putations tractable. The targeting model of covariances thus assumes no localization, nor a hy-

bridization of ensemble-based and stationary covariances; even though these features may be

a part of the actual data assimilation, their inclusion would make the computations here much
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more expensive. This simplifying assumption may cause some minor misestimation of the ac-

tual benefits of assimilating an observation. Results (not shown) indicated that the discrepancies

introduced by making these approximations resulted only in a very small misestimation of the

expected reduction in analysis variance.

c. Targeting based on maximizing the reduction of forecast error variance.

Next, consider choosing locations for additional observations with the goal of minimizing

the forecast-error variance. This requires comparing the forecast from x̄a, the analysis including

both routine and additional observations, with that from x̄b, the analysis based using only rou-

tine observations). Denoting quantities pertaining to these two forecasts by superscripts f ja and

f jb, respectively, the change in forecast-error variance produced by the additional observations

is tr(Pfjb � Pfja). Our methodology is again similar to that proposed in Bishop et al. (2001) and

used in Majumdar et al. (2001).

If the analysis errors are not too large, then Pfjb � Pfja � M(Pb � Pa)MT, where M is the

linearization of the nonlinear forecast operator M . Using (9) and writing Pb = XbXbT ,

Pfjb � Pfja �MXb(HXb)T
�
HPbHT + R

��1
HXb(MXb)T: (16)

Now consider the ensemble of forecasts from the background ensemble, xfjb
i = M (xb

i ) for i =

1; : : : ; n. With the same accuracy, MXb in (16) can be replaced by Xfjb, the matrix whose ith

column is (n� 1)�1=2(xfjb
i � x̄fjb), and (16) becomes

Pfjb � Pfja � Xfjb(HXb)T
�
HPbHT + R

��1
(HXb)XfjbT

: (17)

An efficient calcuation of tr(Pfjb�Pfja) now proceeds as in (14) with the eigendecomposition of�
HPbHT + R

�
and singular-value decomposition of Xfjb as in (13) as

Xfjb = UfjbΣfjbVfjbT
: (18)

Thus,

tr(Pfjb � Pfja) = tr

"�
ΣfjbVfjb(HXb)TQΛo

�1=2
��

ΣfjbVfjb(HXb)TQΛo
�1=2

�T
#
; (19)
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again omitting a factor of Ufjb that does not change the trace.

Algorithmically, the first step is to perform SVDs of the forecasts as in (18). Then for each

observation location (each H), compute the expected reduction in forecast error variance using

(19). After each H has been tested, the target location is determined from the H where the trace

was largest.

4. PERFORMANCE OF THE ENSEMBLE DATA ASSIMILATION METHODS.

Before demonstrating the target selection method, we document the general performance of

the three data assimilation methods using the observations at the fixed network of rawinsondes

in Fig. 1. We describe the general error characteristics of each ensemble, as the error charac-

teristics will affect the amount of improvement that can be expected from a new observation.

As well, the sampling characteristics of the ensembles are briefly documented to justify using

each ensemble to estimate background error covariances. In the subsequent section, the ensem-

ble from each of three experimental data assimilation cycles will be tested for their efficacy in

defining target locations using (15).

For each of the three assimilation methods, a 90-day cycle of short-range forecasts and anal-

yses were generated here, with an updated analysis generated every 12 hours. We document the

performance of three data assimilation schemes as described in Section 2b, Appendix 1, and Ta-

ble 2: an “inflated” ensemble Kalman filter, a “hybrid” EnKF/3D-Var scheme, and a “perturbed

observation” ensemble where the covariances are stationary, as in 3D-Var. For each experiment,

a 100-member ensemble was used.

A time series of analysis errors in the total energy norm for each member and for the en-

semble mean is shown in Figs. 2 a-c. As expected, for each of the three ensembles, the mean

analysis is substantially lower in error than the large majority of individual ensemble member

analyses. Errors for the inflated ensemble are slightly lower than for the hybrid, and both of

these are dramatically lower in error than for the perturbed observation ensemble, indicating the

dramatic benefits that may be achievable with accurate, flow-dependent backround error covari-
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ances (though the relative improvement may be misleading of the results in real-world weather

prediction, since these experiments are conducted with a relatively simple model in a perfect-

model framework).

We also provide a second metric of forecast quality, measuring the ability of the ensemble

to sample properly from the distribution of plausible forecast states. For a properly constructed

ensemble, low analysis error should be accompanied by uniformly distributed rank histograms

(Hamill 2001 and references therein). The rank of the truth relative to a sorted n-member en-

semble of forecasts should be equally likely to occur in any of the n + 1 possible ranks if the

truth and ensemble sample the same underlying probability distribution. Hence, over many sam-

ples, a histogram of the ranks of truth relative to the sorted ensemble should be approximately

uniform.

Figures 3 a-c provides rank histograms for model level 4 potential temperature, generated

using a subset of 20 times from the time series, with the first sample analysis taken 10 days after

the start of the cycle and with 4 days between each sample analysis and samples taken every 250

km in the domain (see caveats in Hamill 2001 about using samples spaced this closely together).

There is an excess of population at the highest ranks, more notably for the two variants of the

ensemble Kalman filter. Interestingly, there appears to be more non-uniformity for the simula-

tion where analysis errors were lower. This showed up in many other simulations as well; often

lower analysis errors were accompanied by more non-uniform rank histograms, suggesting that

it is difficult to optimize the ensemble simultaneously for minimum error characteristics and op-

timum sampling characteristics. In any case, the departures from non-uniformity are quite mild,

and it should be generally reasonable to expect that the background error covariance estimates

required by the targeting algorithm should be reasonably estimated by the sample covariance of

the ensemble.

5. TARGETED OBSERVATION RESULTS.

a. Targeting with full algorithm
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We now test the scheme that selects the target location which will maximize the expected

reduction in analysis error variance (eq. 15). The targeting results shown here are primarily based

on the same subset of 20 of the times in this series, starting ten days into the analysis cycle and

every 4 days thereafter. The analyses produced by the assimilation of the fixed network of rawin-

dondes (raobs) are used as the background states for the targeting tests performed here. This is a

generally justifiable assumption to make if the observations are assimilated serially (Gelb 1974,

Anderson and Moore 1979), though see Whitaker and Hamill (2001) for circumstances under

which this approximation is not valid.

As a first check of our targeting algorithm, we assess whether the expected reduction of

variance is consistent with the actual reduction in variance achieved during the data assimila-

tion. It was assumed that a raob profile with statistics from Table 1 would be available at each

of the fixed set of locations shown in Fig. 4. For each of these locations, the appropriate H op-

erator was developed, and tr(Pb � Pa) was computed via (15). Then, for sample on each of the

20 days, tr(Pb) was computed in the energy norm using (1). The result of this calculation was a

set of estimates of the expected reduction in the sample variance of Pa. The expected fractional

reduction in variance

b =
tr(Pb � Pa)
tr(Pb)

(20)

was then computed for each sample. Next, for each location and time, a sample control obser-

vation was generated, and then a set of perturbed observations. The perturbed observations were

assimilated using a standard ensemble Kalman filter algorithm, with no localization of covari-

ances, no inflation of member deviations, nor hybridization. We then computed the actual frac-

tional reduction in variance

a =
1

n�1
Pn

i=1(xa
i � xa)(xa

i � xa)T

tr(Pb)
(21)

in the energy norm from the ensemble of analyzed states. The expected fractional reduction

from (20) in the sample analysis variance ought to closely match the actual reduction from (21),

with minor variations due to the use of randomly perturbed observations in the actual data as-

similation whose sample variance/covariance statistics may not perfectly match those used in the
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data assimilation. Fig. 5(a) shows the scatterplot of the b vs. a, which as expected shows a very

strong correlation.

Forecast ensembles provide an estimate of the conditional distribution of xt (given all previ-

ously available observations). The sample mean is an estimate of xt, and the trace of the sample

covariance estimates the expected squared error of mean summed over all grid pts, e.g., kxt �

x̄bk2. Eq. (15) estimates how much the squared error of the mean is reduced from the back-

ground to the analysis by assimilating the observations. Now, we will compare that estimate in

the form of b from (20) to actual reduction normalized by background error,

c =
kxb � xtk2 � kxa � xtk2

k(xb � xt)k2
: (22)

Using the same set of samples, Fig. 5(b) shows c plotted against b. There is much less of an ob-

vious linear relationship, though in general large expected reductions in variance are more typ-

ically associated with large reductions in ensemble mean error. We suspect that the lack of lin-

earity in the relationship is most likely due to the small sample size (sample points are not inde-

pendent, since error structures are correlated for sample points on the same case day, and since

there are only 20 case days). Also, note that 28 % of the assimilated observations actually in-

creased the error.

Why do some of the assimilated observations increase the ensemble mean analysis error?

(See Morss and Emanuel 2001 for an extended discussion of this topic.) First, the EnKF pro-

vides a model of background error covariances, but there is no guarantee that these error statis-

tics are perfect. As well, the assimilated observations are imperfect, and sometimes the errors

in the observations may be large enough for the observation to worsen the analysis (see Morss

and Emanuel 2001, Fig. 11 for a nice illustration of this). The nature of the analysis process is

of course statistical and subject to random errors; on average observations provide benefit, but

they are not guaranteed to do so in every individual instance. For this perfect-model simulation

with a known true state, we can assess the importance of observation errors by simply assimi-

lating perfect observations. When they are assimilated, as shown in Fig. 6(c), only 12 % of the

19



instances is the mean square analysis error increased, and the magnitude of the typical degrada-

tion is significantly smaller. This suggests that the majority of the degradations were associated

with errors in the observations.

Next, ensembles from each of the three data assimilation systems were used for target selec-

tion under the assumption that the ensemble could provide a perfect model of the covariances,

i.e., (9) could be used instead of (8) to assess the impact if an EnKF were used for the data as-

similation. The targeting algorithm (15) was used to compute tr(Pb � Pa) for each horizon-

tal grid point in the domain for each of the twenty case days. Figures 6-8 provide maps of the

patterns of expected fractional reduction in analysis error b from (20) on three different case

days using the inflated ensemble. These three cases show days where assimilating a raob pro-

file could be expected to produce small, moderate, and large improvements, respectively. Several

interesting features are shown here. First, the difference in the expected improvement between

Figs. 6(b) and 8(b) is quite dramatic; less than a 10 % improvement from assimilating a raob

profile to approximately a 55 % improvement. This suggests that the algorithm may be able to

define days when supplemental observations will be particularly helpful, as well as where in the

domain the observation should be taken to provide the most benefit. Also note that a synthetic

observation was actually assimilated in each case, with concomitant dramatic reductions in anal-

ysis variance, as illustrated in panel (c) of Figs. 6-8. These show maps of the expected improve-

ment when the targeting algorithm was applied a second time, after the first target raob has been

assimilated.

Figures 7(b) and 8(b) also suggest that an optimal targeting location may differ from that

the casual user might pick from inspection of the flow on that day. In Fig. 7, the ensemble ap-

parently was uncertain about the details of the cutoff low in the northern part of the data void

more than the structure of the jet. Similarly, in Fig. 8, a sheared-out trough was apparently poorly

defined. Also note that the errors between the regions of the primary and secondary maxima in

Figs. 7(b) were likely to be uncorrelated, given their distance from each other and that the pri-

mary target was in a cutoff low detached from the main jet. In Fig. 7(c), after assimilation of
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the primary targeted observation, most of the error variance near the target location had been

eliminated, but not near the secondary location. These suggest that the targeting algorithm some-

times can define two distinct target locations without iteratively running the algorithm.

The targeting examples shown so far were generated with the inflated ensemble. Are the

targets and patterns of expected improvements similar when generated from the hybrid and per-

turbed observation ensembles? Figures 9 (a)-(c) presents the expected improvement from the

hybrid ensemble computed using (15); these panels should be compared respectively to Figs. 6,

7, and 8(b). The patterns of expected improvement were quite similar, and the target locations

for the latter two cases were almost identical.

The perturbed observation ensemble was also examined. In this test, the expected improve-

ment was evaluated using (15), so that P̂b was estimated from the perturbed observation ensem-

ble using (10). This, in essence, assumed that Pb was correctly estimated from the perturbed ob-

servation ensemble, and that the subsequent data assimilation was done with the EnKF instead

of 3D-Var (though, in actuality, the data assimilation did use 3D-Var). Figures 10 (a)-(c) present

the expected improvements for the three case days discussed. The expected improvements that

might be obtained are much larger than for the inflated and hybrid ensembles, concomitant with

the variance in this ensemble being larger. The regions of large improvement are also more dif-

fuse, indicating that the perturbed observation ensemble is generally more uncertain about the

state of the atmosphere over large regions, whereas the inflated and hybrid EnKFs were able to

narrow down the regions with uncertainty. Of course, one would not run a perturbed observa-

tion, 3D-Var ensemble and then switch to assimilating a targeted observation via the EnKF; pre-

sumably, 3D-Var would be used for the assimilation of the targeted observation. We will revisit

shortly the impact of a targeted observation when much less accurate 3D-Var statistics are used

for the data assimilation instead of the ensemble-based statistics.

However, let us briefly return to assessing the impact of these targeted observations on im-

proving analysis errors. To assess the improvement, for each of the 20 case days, the optimal

target location was determined for the inflated, hybrid, and perturbed observation ensemble us-
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ing (15). Because the accuracy of the subsequent analysis may depend upon the accuracy of the

observation, for each case day we generated 5 independent realizations of the control observa-

tions by adding errors to the true state, with the errors consistent with R. Each observation was

then separately assimilated using the same set of background forecasts. c and b were computed

from (22) and (20), respectively, and c vs. b is plotted in Figs. 11 (a)-(c) for the inflated, hybrid,

and perturbed observation ensembles, respectively using (15). The expected reduction in vari-

ance and the actual reduction in ensemble mean error were roughly consistent for the inflated

and hybrid ensembles; generally, larger expected reductions in the ensemble mean error were as-

sociated with larger expected reductions in analysis variance. However, the actual reduction for

the perturbed observation ensemble was much less than predicted. This, as noted in the preced-

ing paragraph, was a consequence of the actual data assimilation being performed with 3D-Var

while the targeting algorithm assumes that the assimilation was performed with an EnKF. Now,

suppose that the ensemble really does provide an accurate model of Pb, but the much less ac-

curate 3D-Var statistics are to be used for the data assimilation. Then we can evaluate the im-

provement from a targeted observation based on equation (8) instead of (9); here, we compute

the trace of (9) assuming P̂b is the stationary, 3D-Var covariance model and Pb is the covari-

ance estimate from the perturbed observation ensemble. Fig. 11 (d) shows c vs. b under these

assumptions. Now, the expected improvement from assimilating via 3D-Var based on (9) was

consistent with the ensemble mean errors. We note that accurately evaluating the improvement

from assimilating targeted observations via 3D-Var requires a reasonably perfect estimate of the

background error covariances, such as may be supplied from an EnKF; if one has such an es-

timate and could perform the assimilation via an EnKF as readily as via 3D-Var, one might as

well assimilate the data with the EnKF. Note also that greater improvements from targeted ob-

servations when using a more sophisticated data assimilation system has previously been sug-

gested by Bergot (2000) and Bishop et al. (2001).

Consider now whether the three ensembles were picking similar target locations. Figure

9 suggests that hybrid and inflated targets were often quite similar, while Fig. 10 suggests that
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perturbed observation targets were rather dissimilar. Figures 12 (a)-(b) show just how similar the

targets were. The targets for the inflated and hybrid ensembles were indeed very similar (Fig.

12(a)), with the exact same target location picked on half the case days, and only three days with

substantially different targets, one of which is illustrated in Figs. 6(b) and 9(a). However, when

comparing the target locations from the inflated ensemble against the perturbed observation en-

semble (Fig. 12(b)), there were many cases when the target locations are quite different. The

differences in target locations do not necessarily indicate a problem with the perturbed observa-

tion ensemble; rather, they highlight that different data assimilation schemes will produce differ-

ent estimates of the background uncertainty.

b. Improvement from targeted vs. fixed observations.

We now attempt to provide an estimate of the benefit of assimilating a supplemental tar-

geted observation relative to assimilating a fixed observation in the middle of the void. We test

this in two manners; first, we compare the analysis error reduction when either a fixed or tar-

geted observation is intermittently assimilated. Next we consider the case if a targeted or new

fixed observation replaces one of the fixed observations in the data-rich region during every data

assimilation cycle.

Using the inflated ensemble and the set of 20 times used previously in Figs. 5 and 11, we

applied the targeting algorithm (15). The fractional reduction in the ensemble mean analysis

error c from (22) was computed and then compared to the fractional reduction that would be

achieved with a fixed supplemental raob profile at the grid point (30,33), in the middle of the

void. A scatterplot of the reduction is shown in Fig. 13. There is a dramatic improvement from

using the targeted observation relative to the fixed observation. The mean improvement is over

20 % for the targeted observation, approximately 4.5 % for the fixed. The targeted observation

improved the analysis in 19 of 20 cases vs. only 15 of 20 for the fixed.

We also performed an experiment where one observation profile in the middle of the data-

rich region was removed (the observation at x=80, y=45 in Fig. 1), and either a new fixed ob-

servation at (30,33) or a targeted observation was assimilated during every cycle. The relative
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improvement now is not nearly as dramatic (Fig. 14). There were substantial reductions in the

ensemble mean analysis error from inserting a fixed observation in the middle of the void (com-

pare to ensemble mean error of 1.07 in Fig. 2(a)). With a targeted observation, there was further

improvement, but not to the extent suggested from the experiments where a targeted observation

was introduced intermittently. There may be a number of factors which limit the improvement

with cycled targeted observations. First, relatively quickly, the targeted observations tamp down

the background variance in the data void. The primary benefit of targeted observations occurs

when the background errors are quite large; then the observation has a great impact (see Morss

and Emanuel 2001 as well). When a targeted observation is continually assimilated, it reduces

the maximum background errors substantially, and errors are not likely to grow back to their

original magnitude in the 12 h to the next assimilation cycle. Thus, in some sense a targeted ob-

servation can make subsequent targeted observations less neccessary. Another possibility is that

features with high errors eventually flow near enough by the fixed observation to be effectively

corrected using the EnKF covariances.

b. Targeting based on ensemble spread

The algorithm described in (15) still requires a non-negligible amount of computer wall

time and involves a moderate amount of coding. Since it is theoretically justifiable based on

filtering theory and requires only minor approximations, it does provide a nice baseline for the

evaluation of simpler targeting schemes. We examined one such scheme, selecting a target where

the spread was largest. Such a technique has been suggested in the past in Lorenz and Emanuel

(1998), Morss (1998), and Morss et al. (2000). Here, we used the squared spread (the variance

about the ensemble mean) of column total energy generated from the inflated ensemble and com-

pared it to the target locations selected from (15) using the inflated ensemble. Figures 15 (a)-(c)

shows the squared spread in the ensemble on the same 3 days as pictured in Figs. 6-8; note the

strong correlation in the patterns of spread and the magnitudes of expected improvement in Figs.

6, 7, and 8(b). Figure 16 (a) shows the strong correspondence of locations over the 20 cases and
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how the expected improvement using (15) was quite similar to the expected improvement at the

at the spread target locations.

The strong correspondence was somewhat to be expected. The Kalman gain K = PbHT(HPbHT+

R)�1 is the product of two factors. The first, PbHT, is the covariance between the observation

location and other grid points. The second, (HPbHT + R)�1, accounts for the expected differ-

ences between the observation and the background, and is determined by the spread of the en-

semble at the observation location. If many grid points have errors that strongly co-vary with

errors at the observation site, then the observation will make large corrections to the analysis

over those covarying grid points. Conversely, if the observation location is relatively uncorre-

lated with many other points, its domain-averaged influence is small (Berliner et al. 1999). If

the amount of covariance is rather similar from grid point to grid point, then the spread in the

ensemble is the primary factor in determining target location; however, if the spread is similar

everywhere, the covariance will play a bigger role in determining the target location. For the in-

termittent assimilation of observations, the target location apparently was determined largely by

the geographical variations of spread more than by the correlation structure.

To demonstrate the improvement that may be realized from the continual application of

a targeting algorithm based on spread, we performed an experiment similar to the one used to

generate Fig. 14. We conducted a 90-day assimilation cycle, assimilating all of the fixed obser-

vations shown in Fig. 1 except the observation at x=80, y=45. We then assimilated a replace-

ment targeted observation at the location with maximum spread. This resulted in a reduction

of ensemble mean error in the energy norm of about 18 out in the void is what was of impor-

tance more than the specific location of the observation. To test this, we performed the same

experiment of removing the observation at the location with the minimum spread, but its re-

placement was an observation with a fixed location of x=30, y=33, near the middle of the void.

The improvement for this network was about the same as with the targeted observation based on

spread.
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Collectively, these results suggest that intermittent targeting based on spread generated from

an appropriate ensemble should be both useful and simple to implement. However, when cy-

cled, the variance in the ensemble is quickly reduced and homogenized, and the spread algo-

rithm is not very effective. Further improvements mostly depend upon the using information on

the correlation structure of errors, as evidenced by the improvement noted in Fig. 14 but not in

Fig. 17.

6. DISCUSSION AND CONCLUSIONS.

The underlying theory of data assimilation provides a rational basis for the selection of a

targeted observation location. Under the theory, if the prior (background) error covariance is ac-

curately modeled and depends upon the dynamics of the flow, then the effect of a targeted obser-

vation upon analysis error variance can be estimated. At first glance, the equation for estimating

this posterior covariance appears computationally too demanding to be useful, owing to the high

dimensionality of the background error covariance matrix. However, if background error covari-

ances are modeled using ensemble data assimilation methods such as the EnKF, the background

error covariances can be estimated in a reduced-dimension subspace and the computations made

more efficient.

We demonstrated the application of an algorithm to select the optimal target location us-

ing the background error statistics from an ensemble Kalman filter in a quasigeostrophic model.

The algorithm was able to determine locations on each day where a supplementary observation

was of the greatest expected benefit, and it was able to determine how much this benefit changes

from day to day. When tested in a simple quasigeostrophic channel model under perfect-model

assumptions, the algorithm found large day-to-day variations in the expected improvement from

a targeted observation, suggesting that it may be possible to define a small subset of days when

such supplemental observations will be especially helpful in reducing analysis errors.

The importance of the data assimilation scheme, and a technique for accounting in the tar-

geting algorithm for the scheme to be used to assimilate additional observations, were also tested.
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Given a good estimate of the backround error covariances (from a perturbed-observation ensem-

ble), additional observations produced a much greater reduction in error when assimilated with

an EnKF than when assimilated with 3D-Var. In addition, we also showed that, by using (8),

such differences among assimilation schemes could be explicitly included when selecting an op-

timal observation location; but application of this method still required a good estimate of the

background error covariances. These results highlight the crucial need for accurate estimates of

the background error covariance matrix when choosing or assimilating adaptive observations.

If a targeted observation was assimilated intermittently, that observation increased the per-

centage of analysis error variance reduction fourfold compared to the assimilation of an obser-

vation at a fixed location in the middle of the data void. However, if either a fixed or a targeted

observation was assimilated during every data assimilation cycle, the reduction in error was less

dramatic. Targeted observations were most helpful in situations when the background errors are

large. Thus, if previous targeted observations had already dramatically reduced analysis errors,

subsequent targeted observations were less useful.

As a proxy for the full targeting algorithm developed here, we examined the efficacy of as-

similating a targeted observation based on the spread in the ensemble. If such an observation

was intermittently assimilated, it provided nearly the same level of benefit as an observation

taken at the location determined from the full targeting algorithm. However, if a targeted ob-

servation based on ensemble spread is assimilated every cycle, the reduction in error relative to a

fixed observation was negligible. This suggests that the spread algorithm efficiently determines

locations where background errors were large, and assimilation of the targeted observation sig-

nificantly reduced the analysis error. However, once the background errors had been made more

uniformly distributed, the spread algorithm provided little or no subsequent benefit. Likely this

was because the reduction in analysis error from a given observation is both a function of the

uncertainty (the spread) in background errors and the structure of how errors were correlated

between the observation location and the analysis grid point. This latter effect was apparently
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more important in situations where there were not dramatic spatial variations in background er-

ror statistics.

Readers are cautioned not to overinterpret the results presented here. These results used a

simplified, quasigeostrophic channel model under the assumptions of no model error. Further,

the network we tested had a dramatic data void; in reality, observations are available throughout

the real-world data voids, though often the observations are of lesser quality and do not contain

detailed vertical structure. Further, the algorithms presented here will not work as well if there is

a large amount of nonlinearity in the forecast or non-Gaussianity of error distributions. Given all

these qualifications, our results should be interpreted as estimating an upper bound for the use-

fulness of adaptive observations. Nonetheless, this algorithmic approach may be very attractive,

since it is theoretically consistent with the underpinnings of current data assimilation systems.

The application of such an algorithm in real-world numerical weather prediction and data

analysis presupposes the existence of an operational EnKF or other similar algorithm. While

many groups are working toward this goal, as of yet there is no operational EnKF for atmospheric

data assimilation. Perhaps the clear benefit of the EnKF, not only for straightforward data assim-

ilation, but also for these ancillary applications, will make its appeal greater within the opera-

tional numerical forecast facilities.

7. APPENDIX 1: DATA ASSIMILATION METHODS.

Each of the three ensembles are generated by conducting parallel data assimilation cycles,

with different member cycles receiving different perturbed observations. We start with an en-

semble of n member analyses at some time t0. These perturbed analyses were generated by adding

scaled differences between random model states (Schubert and Suarez 1989) to a control analy-

sis. We then repeat the following three-step process for each data assimilation cycle: (1) Make

n forecasts to the next analysis time, here, 12 h hence. These forecasts will be used as back-

ground fields for n subsequent parallel objective analyses. (2) Given the already imperfect ob-

servations at this next analysis time (hereafter called the “control” observations), generate n in-
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dependent sets of perturbed observations by adding random noise to the control observations.

The noise is drawn from the same distributions as the observation errors (see section 2a). The

perturbations are constructed in a manner to ensure that the mean of the perturbed observations

is equal to the control observation. (3) Perform n objective analyses, updating each of the n

background forecasts using the associated set of perturbed observations. The rationale for this

methodology is outlined in Burgers et al. (1998). The details of how the objective analysis is

performed for each of the three ensembles is discussed below.

Additional complexity will be introduced here to the basic design of the EnKF. As noted in

previous work, (e.g., Houtekamer and Mitchell 1998, van Leeuwen 1999, Hamill et al. 2001),

these details are added to simplify computations, to improve the analysis, and perhaps most im-

portantly, to avoid the effects of a detrimental process known as “filter divergence”. This is a

process whereby errors can start a cyclical and worsening underestimation of background covari-

ances that results in the ensemble ignoring the influence of new observations. A discussion of

this problem is provided in Hamill et al. (2001).

A variety of methods have been tried to prevent filter divergence. Houtekamer and Mitchell

(1998) and Mitchell and Houtekamer (2000) propose the use of a “double” EnKF, and more re-

cently, a localization of ensemble covariance estimates, explained later (Houtekamer and Mitchell

2000). Anderson and Anderson (1999) suggest inflating the deviation of background members

with respect to their mean by a small amount. Hamill and Snyder (2000) proposed a hybrid en-

semble Kalman filter/3D-Var data assimilation system, where background error covariances are

modeled as a weighted linear combination of covariances from the ensemble and stationary co-

variances from 3D-Var. By including a small amount of 3D-Var covariances which have more

degrees of freedom and are larger in magnitude (by virtue of being a less accurate data assimi-

lation scheme), the algorithm draws the analyses more toward the observations and adjusts them

in more directions in phase space than they are in a straight EnKF. This tends to prevent filter

divergence.
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We have coded the assimilation algorithm here in a general manner, permitting (a) covari-

ance localization, (b) the inflation of member deviations from their mean, and/or (c) the hybridiza-

tion with or even total usage of 3D-Var covariances. However, the implementation of the hy-

brid as used here is somewhat different than that described in Hamill and Snyder (2000); notably

though the same forecast model is used, the analysis variable is now geopotential rather than po-

tential vorticity, and the analysis equations are solved in observation space. Also, the 3D-Var

statistics are calculated in a different manner, and covariances from the ensemble are localized.

More details are provided below.

Recall xb
i , i = 1; : : : ; n is defined as the m-dimensional model state vector for the ith mem-

ber background forecast of an n-member ensemble. The state vector x for the QG model data

assimilation system is comprised of the streamfunction at each level and grid point, and the po-

tential temperature at each grid point of the top and bottom boundaries.

Presuming one starts with an ensemble of initial conditions generated in a rational man-

ner, the first step in the data assimilation is to integrate an ensemble of forecasts to the next time

when observations are available. If the option to inflate the ensemble is invoked, the next step is

to replace the background state with a new background state inflated about the ensemble mean

forecast. Background forecasts deviation from the mean are inflated by an amount r, slightly

greater than 1.0:

xb
i  r

�
xb
i � xb

�
+ xb

Here, the operation denotes a replacement of the previous value.

Next, following the standard EnKF formulation, each member of the ensemble is updated.

The analysis equation for the ith member is

xa
i = xb

i + P̂bHT
h
HP̂bHT + R

i�1�
yo
i �Hxb

i

�
: (A1)

xa
i is the subsequently analyzed state. yo denotes the set of no control observations, with distinct

perturbed observations yo
i generated for each member forecast. P̂b is an approximation of the

background error covariances, described below, and H (here assumed linear) is an operator that
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converts the model state to the observation type and location. R is the no � no measurement

error covariance matrix; that is, the observations are related to the true state xt by yo = Hxt + �;

where � is a normally distributed, random vector with zero mean and covariance matrix R. Note

also that the operation sequence P̂bHT
h
HP̂bHT + R

i�1
is often referred to as the gain matrix; it

represents how the observation increment yo
i � Hxb

i will change the background state at every

grid point.

In this data assimilation scheme, nr individual fixed location raob profiles are assimilated

serially; that is, the set of analyses generated by updating the background states with the first

raob serves as the background states for assimilation of the second raob, and so on, until all nr

profiles are assimilated. Then these member analyses are used as the background forecasts for

assimilation of a targeted observation. Because raob errors should be independent of each other,

the analysis produced by the serial assimilation of raobs should be identical to the analysis pro-

duced by assimilating all raobs together (Anderson and Moore 1979). Further, this makes the

rank of
h
HP̂bHT + R

i
rather low, so computation of its inverse is not expensive.

As in Evensen (1994) and Houtekamer and Mitchell (1998, 2001), for computational effi-

ciency, the matrix operations P̂bHT and HP̂bHT in (2) are computed together using data from

the ensemble of background states. Again, Xb is the matrix whose ith column is (n�1)�1=2(xb
i�

x̄b). Then

P̂bHT =
�
1� �

�
� � Xb(HXb)

T
+ �c

D
P̂bHT

E
; (A2)

and

HP̂bHT =
�
1� �

�
HXb(HXb)

T
+ �c

D
HP̂bHT

E
: (A3)

There are two terms in each equation. The first term reprents the contribution of flow-dependent

statistics derived from the ensemble, and the second term represents the stationary, 3D-Var con-

tribution. They are weighted by �, a tuneable, fixed constant, 0:0 � � � 1:0.
D

P̂bHT
E

andD
HP̂bHT

E
represent time-averaged covariance information, developed from a background fore-

casts from a 400-member EnKF over a 90-day integration with updates every 12 h. For this im-

plementation, the time-average covariances are calculated separately for each raob location, and
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covariances need not be isotropic and may vary with the observation location. c is an inflation

factor for time-averaged covariances, here set to 16.0. Various magnitudes were tested in a con-

trol 3D-Var assimilation cycle with � = 1:0; 16.0 was found to be an approximately optimal

inflation factor. This factor is larger than 1.0 since the time-averaged model for covariances is

much less accurate than the flow-dependent model, so when cycled for a long time, background

errors become much greater than in they are in the EnKF (see section 4 also).

The operation � � in (A2) denotes a Schur product (an element-by-element multiplication)

of a correlation matrix S with the covariance model generated by the ensemble, that is, a local-

ization of covariances. The Schur product of matrices A and B is a matrix C of the same dimen-

sion, where Cij = AijBij . For serial data assimilation, the function S depends upon the obser-

vation location; it is a maximum of 1.0 at the observation location and typically decreases mon-

tonically to zero at some finite distance from the observation. The Schur product is not applied

in (A3), a minor approximation; the H operator involves a limited stencil of grid points near the

observation location, and the correlation at all grid points is approximately 1.0. See Houtekamer

and Mitchell (2001) and Hamill et al. (2001) for further explanations of the rationale for covari-

ance localization.

Because the forecast model we use has impermeable walls on the north and south walls, S

cannot be modeled strictly using a simple isotropic localization function around the observation

such as suggested by Gaspari and Cohn (1999); the Schur product of this with P̂bHT will pro-

duce different elements in the gain matrix for the grid points along the north and south walls.

This in turn will cause analysis increments to vary along the walls, producing a model state which

violates the boundary conditions. Hence, a modified form of covariance localization is used that

permits the same covariance value to be used at all points along the wall.

To localize covariances, we use the compactly supported, 5th-order function in Gaspari and

Cohn (1999). Define a correlation length scale lc, measured in model grid points, and let Fc =q
10
3 lc. Define kDijk to be the Euclidean distance in grid points between grid point (i; j) and

the observation location. Then an isotropic localization function wij is defined for every grid
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point (i; j) in the domain according to wij(i; j) = Ω (Fc; kDijk), where

Ω (a; b) =

8>>><
>>>:
�1

4

�
b
a

�5
+ 1

2

�
b
a

�4
+ 5

8

�
b
a

�3
� 5

3

�
b
a

�2
; 0 � b � a;

1
12

�
b
a

�5
� 1

2

�
b
a

�4
+ 5

8

�
b
a

�3
+ 5

3

�
b
a

�2
� 5

�
b
a

�
+ 4� 2

3

�
b
a

��1
; a < b � 2a;

0: b > 2a.

(A4)

We also define a function wj(j), which is maximized at the walls and decreases quickly toward

zero away from them. Let nj equal the number of grid points in north-south direction (here, 65).

Define a distance from the nearest wall kDjk according to

kDjk =
�
j � 1; if j � nj

2 + 1;
nj + 1� j; otherwise. (A5)

Then wj(j) = Ω (2:5; kDjk). Finally, we define the overall localization matrix operator S with

element sij at the (i; j)th grid point. sij is a combination of the isotropic function and the zon-

ally averaged function, with the weight given to each depending on j:

sij = max
i

�
wij(i; j)

�
wj(j) +

�
1� wj(j)

�
wij(i; j) (A6)

Examples of what this localization function looks like for a grid point in the center of the do-

main and near a wall are shown in Figs. 18 a-b.
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FIGURE CAPTIONS

Figure 1. Location of fixed raobs for network with data void.

Figure 2. Time series of analysis errors for ensemble assimilating raob data using the fixed net-

work in Fig. 1. Dots indicate errors of individual ensemble members, and the solid line the

error of the ensemble mean. Time averaged errors for individual members and for ensemble

mean are denoted by the numbers on right-hand side of plot. (a) Inflated EnKF, (b) hybrid

EnKF/3D-Var, and (c) perturbed observation / 3D-Var ensemble.

Figure 3. Rank histograms for analyzed � at model level 4. (a) Inflated ensemble, (b) hybrid, (c)

perturbed observation.

Figure 4. Observation locations for testing of expected vs. actual analysis variance reduction.

Figure 5. Comparisons of variances when assimilating observations at locations in Fig. 5 using

inflated ensemble. (a) Actual fractional reduction in analysis variance a vs. expected reduc-

tion in analysis variance b. (b) Fractional reduction in ensemble mean variance c vs. b when

using imperfect observations, and (c) as in (b), but using perfect observations.

Figure 6. Expected reduction in analysis error variance b from application of targeting algo-

rithm on Day 14 of the 90-day integration of the inflated ensemble assimilation scheme. (a)

True geopotential height (solid) at model level 8 and �T (potential temperature on top lid;

dashed). (b) Expected fractional reduction in analysis error variance from background vari-

ance b mapped for each potential observation location in the domain. Dots indicate locations

of fixed network of observations previously assimilated. Star indicates location of maximum

expected reduction (the target location). Contours at 2 % and every 4 % thereafter. (c) As in

(b), but the improvement after the first targeted observation has been assimilated.

Figure 7. As in Fig. 7, but for day 54.

Figure 8. As in Fig. 7, but for day 70.

Figure 9. (a) As in Fig. 6(b), but for hybrid ensemble, (b) As in Fig. 7(b), but for hybrid en-

semble, and (c) As in Fig. 8(b), but for hybrid ensemble.
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Figure 10. (a) As in Fig. 6(b), but for perturbed observation ensemble. However, contour inter-

val is changed to 4 % and every 8 % thereafter. (b) As in Fig. 7(b), but for perturbed obser-

vation ensemble, and (c) As in Fig. 8(b), but for perturbed observation ensemble.

Figure 11. (a) Actual fractional reduction in ensemble mean variance c vs expected fractional

reduction in analysis error variance b for optimal target locations from inflated ensemble.

Five independent control observations tested for each of the 20 case days. (b) As in (a), but

for hybrid ensemble, and (c) As in (a), but for perturbed observation ensemble. (d) As in

(c), but where eq. (9) is used instead of (10) to predict expected improvement.

Figure 12. (a) Difference in selected optimal target locations when using inflated ensemble (dark-

ened dots) and hybrid ensemble (diamonds). Darkened diamonds indicate that target loca-

tions were identical. Targets for the same case day are connected by solid line. (b) As in (a),

but for inflated ensemble vs. perturbed observation ensemble.

Figure 13. Improvement in ensemble mean analysis error when assimilating targeted vs fixed

observations on each of 20 case days.

Figure 14. Time series of ensemble mean analysis errors when replacing observation profile at

(80,45) in the data assimilation cycle with either a fixed profile at (30,33) or a targeted ob-

servation.

Figure 15. Squared spread in column total energy from the inflated ensemble (shaded) and level

8 geopotential (dark solid lines). Target locations are marked with a star. Contours for spread

at 1, 2, 3, 5, 10, 15, 20, 30, 40, 50, and 60 m2s�2. (a) Case day 14 (compare with Fig. 7b).

(b) Case day 54 (compare with Fig. 8b). (c) Case day 70 (compare with Fig. 9b).

Figure 16. (a) Difference in selected optimal target locations when using full targeting algo-

rithm with inflated ensemble (darkened dots) and targets based on maximum column total

energy spread in inflated ensemble (diamonds). (b) Expected reduction in analysis error

variance as evaluated from ensemble when targets locations are defined by full algorithm

(abscissa) vs. at locations with maximum spread (ordinate).
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Figure 17. Ensemble mean errors in the energy norm using the inflated ensemble. Solid line in-

dicates errors for where a single sounding from the fixed network at the location x=80,y=45

has been replaced by a sounding at a sounding at x=30, y=33. Dashed line indicates errors

where sounding at x=80,y=45 is replaced by a targeted observation with the location deter-

mined by the maximum spread.

Figure 18. Covariance localization functions for (a) grid point near the center of the channel,

and (b) grid point near wall. Correlation length scale in this example is 15 grid points.
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Figure 1. Location of fixed raobs for network with data void.
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Figure 2. Time series of analysis errors for ensemble assimilating raob data using the fixed net-

work in Fig. 1. Dots indicate errors of individual ensemble members, and the solid line the

error of the ensemble mean. Time averaged errors for individual members and for ensemble

mean are denoted by the numbers on right-hand side of plot. (a) Inflated EnKF, (b) hybrid

EnKF/3D-Var, and (c) perturbed observation / 3D-Var ensemble.
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Figure 3. Rank histograms for analyzed � at model level 4. (a) Inflated ensemble, (b) hybrid, (c)

perturbed observation.
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Figure 4. Observation locations for testing of expected vs. actual analysis variance reduction.
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Figure 5. Comparisons of variances when assimilating observations at locations in Fig. 5 using

inflated ensemble. (a) Actual fractional reduction in analysis variance a vs. expected reduc-

tion in analysis variance b. (b) Fractional reduction in ensemble mean variance c vs. b when

using imperfect observations, and (c) as in (b), but using perfect observations.

47



Figure 6. Expected reduction in analysis error variance b from application of targeting algo-

rithm on Day 14 of the 90-day integration of the inflated ensemble assimilation scheme. (a)

True geopotential height (solid) at model level 8 and �T (potential temperature on top lid;

dashed). (b) Expected fractional reduction in analysis error variance from background vari-

ance b mapped for each potential observation location in the domain. Dots indicate locations

of fixed network of observations previously assimilated. Star indicates location of maximum

expected reduction (the target location). Contours at 2 % and every 4 % thereafter. (c) As in

(b), but the improvement after the first targeted observation has been assimilated.
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Figure 7. As in Fig. 7, but for day 54.
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Figure 8. As in Fig. 7, but for day 70.
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Figure 9. (a) As in Fig. 6(b), but for hybrid ensemble, (b) As in Fig. 7(b), but for hybrid en-

semble, and (c) As in Fig. 8(b), but for hybrid ensemble.
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Figure 10. (a) As in Fig. 6(b), but for perturbed observation ensemble. However, contour inter-

val is changed to 4 % and every 8 % thereafter. (b) As in Fig. 7(b), but for perturbed obser-

vation ensemble, and (c) As in Fig. 8(b), but for perturbed observation ensemble.
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Figure 11. (a) Actual fractional reduction in ensemble mean variance c vs expected fractional

reduction in analysis error variance b for optimal target locations from inflated ensemble.

Five independent control observations tested for each of the 20 case days. (b) As in (a), but

for hybrid ensemble, and (c) As in (a), but for perturbed observation ensemble. (d) As in

(c), but where eq. (9) is used instead of (10) to predict expected improvement.
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Figure 12. (a) Difference in selected optimal target locations when using inflated ensemble (dark-

ened dots) and hybrid ensemble (diamonds). Darkened diamonds indicate that target loca-

tions were identical. Targets for the same case day are connected by solid line. (b) As in (a),

but for inflated ensemble vs. perturbed observation ensemble.
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Figure 13. Improvement in ensemble mean analysis error when assimilating targeted vs fixed

observations on each of 20 case days.
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Figure 14. Time series of ensemble mean analysis errors when replacing observation profile at

(80,45) in the data assimilation cycle with either a fixed profile at (30,33) or a targeted ob-

servation.
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Figure 15. Squared spread in column total energy from the inflated ensemble (shaded) and level

8 geopotential (dark solid lines). Target locations are marked with a star. Contours for spread

at 1, 2, 3, 5, 10, 15, 20, 30, 40, 50, and 60 m2s�2. (a) Case day 14 (compare with Fig. 7b).

(b) Case day 54 (compare with Fig. 8b). (c) Case day 70 (compare with Fig. 9b).
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Figure 16. (a) Difference in selected optimal target locations when using full targeting algo-

rithm with inflated ensemble (darkened dots) and targets based on maximum column total

energy spread in inflated ensemble (diamonds). (b) Expected reduction in analysis error

variance as evaluated from ensemble when targets locations are defined by full algorithm

(abscissa) vs. at locations with maximum spread (ordinate).
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Figure 17. Ensemble mean errors in the energy norm using the inflated ensemble. Solid line in-

dicates errors for where a single sounding from the fixed network at the location x=80,y=45

has been replaced by a sounding at a sounding at x=30, y=33. Dashed line indicates errors

where sounding at x=80,y=45 is replaced by a targeted observation with the location deter-

mined by the maximum spread.
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Figure 18. Covariance localization functions for (a) grid point near the center of the channel,

and (b) grid point near wall. Correlation length scale in this example is 15 grid points.
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Table 1. Observation error variances for temperature (K2), and u- and v- wind components (m2s�2).

Level Pressure (hPa) T u v

1 917 2.82 2.16 1.62

2 771 2.06 3.62 2.71

3 648 1.69 4.96 3.73

4 545 1.69 5.81 4.36

5 458 2.01 6.73 5.05

6 385 2.74 7.71 5.78

7 324 3.59 8.76 6.57

8 272 4.39 8.82 6.61

Table 2. Parameters used for the three data assimilation approaches tested here. � is the per-

centage weight applied to stationary covariances; c is an inflation factor for the time-mean

covariances derived from an EnKF; r is the amount that background forecast deviations about

the mean are inflated before the data assimilation proceeds, and lc is the correlation length

scale (in grid points) for the covariance localization.

Experiment Name � c r lc

1 Inflated 0.0 n/a 1.015 28.0

2 Hybrid 0.075 16.0 1.00 25.0

3 Perturbed Obs 1.0 16.0 1.00 n/a
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